McMurdo LTER Publications

Export 734 results:
Author Title Type [ Year(Asc)]
2018
Heindel RC, W Lyons B, Welch S, Spickard AM, Virginia RA. Biogeochemical weathering of soil apatite grains in the McMurdo Dry Valleys, Antarctica. Geoderma. 2018;320:136-145. doi:10.1016/j.geoderma.2018.01.027.
Obryk MK, Fountain AG, Doran PT, W Lyons B, Eastman R. Drivers of solar radiation variability in the McMurdo Dry Valleys, Antarctica. Scientific Reports. 2018;8. doi:10.1038/s41598-018-23390-7.
Khan AL, McMeeking G, Schwarz JP, et al. Near-surface refractory black carbon observations in the atmosphere and snow in the McMurdo Dry Valleys, Antarctica and potential impacts of foehn winds. Journal of Geophysical Research: Atmospheres. 2018. doi:10.1002/2017JD027696.
Andriuzzi WS, Adams B, Barrett JE, Virginia RA, Wall DH. Observed trends of soil fauna in the Antarctic Dry Valleys: early signs of shifts predicted under climate change. Ecology. 2018;99(2):312 - 321. doi:10.1002/ecy.2090.
Spigel RH, Priscu JC, Obryk MK, Stone WC, Doran PT. The physical limnology of a permanently ice-covered and chemically stratified Antarctic lake using high resolution spatial data from an autonomous underwater vehicle. Limnology and Oceanography. 2018. doi:10.1002/lno.10768.
Ball B, Adams B, Barrett JE, Wall DH, Virginia RA. Soil biological responses to C, N and P fertilization in a polar desert of Antarctica. Soil Biology and Biochemistry. 2018;122. doi:10.1016/j.soilbio.2018.03.025.
Wlostowski A, Gooseff MN, Adams B. Soil Moisture Controls the Thermal Habitat of Active Layer Soils in the McMurdo Dry Valleys, Antarctica. Journal of Geophysical Research: Biogeosciences. 2018. doi:10.1002/2017JG004018.
E. Shaw A, Adams B, Barrett JE, W Lyons B, Virginia RA, Wall DH. Stable C and N isotope ratios reveal soil food web structure and identify the nematode Eudorylaimus antarcticus as an omnivore–predator in Taylor Valley, Antarctica. Polar Biology. 2018. doi:10.1007/s00300-017-2243-8.
2017
W Lyons B, Bullen T, Welch KA. Ca isotopic geochemistry of an Antarctic aquatic system. Geophysical Research Letters. 2017;44(2):882 - 891. doi:10.1002/2016GL071169.
Singley JG, Wlostowski A, Bergstrom AJ, et al. Characterizing hyporheic exchange processes using high-frequency electrical conductivity-discharge relationships on subhourly to interannual timescales. Water Resources Research. 2017;53(5):4124 - 4141. doi:10.1002/wrcr.v53.510.1002/2016WR019739.
Kuhn M, Fountain AG. The Climate of Snow and Ice as Boundary Condition for Microbial Life in Psychrophiles: From Biodiversity to Biotechnology. In: Margesin R 2nd ed. Springer; 2017. doi:10.1007/978-3-319-57057-010.1007/978-3-319-57057-0_1.
Brewster SA. Comparing the Weathering Environment of Permian and Modern Antarctic Proglacial Lake Sediments: Mineralogical and Geochemical Study. W Lyons B. School of Earth Sciences. 2017;BS. Available at: http://hdl.handle.net/1811/80763.
Gooseff MN, Barrett JE, Adams B, et al. Decadal ecosystem response to an anomalous melt season in a polar desert in Antarctica. Nature Ecology & Evolution. 2017;1(9):1334-1338. doi:10.1038/s41559-017-0253-0.
Knox M, Andriuzzi WS, Buelow HN, Takacs-Vesbach C, Adams B, Wall DH. Decoupled responses of soil bacteria and their invertebrate consumer to warming, but not freeze-thaw cycles, in the Antarctic Dry Valleys. Ecology Letters. 2017;20(10):1242-1249. doi:10.1111/ele.12819.
Khan AL, Wagner S, Jaffé R, et al. Dissolved black carbon in the global cryosphere: Concentrations and chemical signatures. Geophysical Research Letters. 2017;44(12):6226-6234. doi:10.1002/2017GL073485.
Ferrera I, Sarmento H, Priscu JC, Chiuchiolo A, González JM, Grossart H-P. Diversity and Distribution of Freshwater Aerobic Anoxygenic Phototrophic Bacteria across a Wide Latitudinal Gradient. Frontiers in Microbiology. 2017;8. doi:10.3389/fmicb.2017.00175.
Lawrence J. Evidence of Subglacial Brine Inflow and Wind-Induced Mixing from High Resolution Temperature Measurements in Lake Bonney, Antarctica. Doran PT. Department of Geology and Geophysics. 2017;M.S. Available at: https://digitalcommons.lsu.edu/gradschool_theses/4343.
Olund SA. Fe and Nutrients in Coastal Antarctic Streams: Implications for Marine Primary Production in the Ross Sea. W Lyons B. Earth Sciences. 2017;MS. Available at: http://rave.ohiolink.edu/etdc/view?acc_num=osu1492697894343546.
J. KOCIOLEK PATRICK, Kopalova K, Hamsher SE, et al. Freshwater diatom biogeography and the genus Luticola: an extreme case of endemism in Antarctica. Polar Biology. 2017;40(6):1185-1196. doi:10.1007/s00300-017-2090-7.
Saelens ED. The geochemistry of minor cations within Antarctic stream water: Determining the role of the hyporheic zone. W Lyons B. School of Earth Sciences. 2017;B.A. Available at: http://library.ohio-state.edu/record=b8218699~S7.
Fountain AG, Fernandez-Diaz JC, Obryk MK, et al. High-resolution elevation mapping of the McMurdo Dry Valleys, Antarctica, and surrounding regions. Earth System Science Data. 2017;9:435 - 443. doi:10.5194/essd-9-435-2017.
Gooseff MN, Wlostowski A, McKnight DM, Jaros C. Hydrologic connectivity and implications for ecosystem processes - Lessons from naked watersheds. Geomorphology. 2017;277:63 - 71. doi:10.1016/j.geomorph.2016.04.024.
Sudman Z, Gooseff MN, Fountain AG, Levy JS, Obryk MK, Van Horn DJ. Impacts of permafrost degradation on a stream in Taylor Valley, Antarctica. Geomorphology. 2017;285:205 - 213. doi:10.1016/j.geomorph.2017.02.009.
Obryk MK, Doran PT, Waddington ED, McKay CP. The influence of föhn winds on Glacial Lake Washburn and palaeotemperatures in the McMurdo Dry Valleys, Antarctica, during the Last Glacial Maximum. Antarctic Science. 2017;29(5):457-467. doi:10.1017/S0954102017000062.
Heindel RC, Spickard AM, Virginia RA. Landscape-scale soil phosphorus variability in the McMurdo Dry Valleys, Antarctica. Antarctic Science. 2017;29(3):252-263. doi:10.1017/S0954102016000742.

Pages